Fixed Point Theorems

We prove some fixed point theorems without use of homotopy. We follow
‘Banach Space Theory, by Fabian et al for Brouwer’s Fixed Point Theorem,
Linear Operators by Dunford and Schwartz, Part I for Theorem 4 and ’A
course on Functional Analysis by Conway for the others . We give more detailed
proofs than the one in above books with the hope that this will make it easier
for students to understand the proofs.

Theorem 1 [ Brouwer’s Fixed Point Theorem)]
Any continuous map of {z € R" : ||z|| < 1} into itself has a fixed point.

A proof of Brouwer’s fixed point theorem:
Lemma 1

If f:5""1 — R" is continuous, < f(x),z >= 0 and f(x) # 0 for all 2 then
there exists a continuously differentiable function g : R™\{0} — R™ such that
lg(x)|| = 1 for all x € S"~L g(rz) = rg(x) for all x € R"\{0} for all 7 > 0 and
< g(x),z >=0for all z € S~ L.

Proof: Let m = inf{||f(x)| : # € S"~1}. Of course, m > 0. There exists a
polynomial p : R® — R"™ such that ||p(z) — f(z)| < m/2 for all z € S*~ 1. [If
two polynomials coincide on S”~! then their difference has infinitely many zeros,
hence it is 0. Thus we can apply Stone -Weierstrass Theorem]. Define h : R® —
R™ by h(z) = p(z)— < p(z),z > z. Claim: h is ’smooth’, < h(z),z >= 0
whenever ||z]| = 1,||p(z) — h(z)|] < m/2 for x € S"~1. Only the last prop-
erty needs a proof. [p(x) — h(z)| = |< p(z),w > = |< p(z) - f(x),z >| <
lp(z) — f(x)|| < m/2 so the claim is proved. Claim: h(z) # 0 if z € S"~1.
Indeed h(z) = 0 implies ||p(z)|| < m/2 and ||f(z)|| < |[p(z)| + m/2 < m con-

tradicting the definition of m. Now let g(z) = l‘\fill(};(ﬁl/orl‘\ijc)l\‘l) for z € R"\{0}. We

have < h(z/ ||z|),z >=< h(x),z >= 0 for z € S"~! and the proof is complete.
Lemma 2

Let K C R™ be a non-void compact set. Let f : Q — R™ be continuously
differentiable where Q is open and K C Q. Let fi(z) = = + tf(z) for © €
Q. Then, for |¢| sufficiently small, f; is one-to-one on K and m,(f;(K)) is a
polynomial in t.

Claim: there exists ¢ € (0,00) such that |[f(z) — f(v)|| < c|lz —y]|| for
all z,y € K. If not, then there exist ,,,y, € K such that ||f(z,) — f(yn)|| >
n ||z, — yn|| Yn. By going to a subsequence we may suppose x,, — x and y, — ¥.
If © # y we get || f(xn) — f(yn)|| — o0, a contradiction. If = y then differen-
tiability at z is contradicted. [ In fact ||f(xn) — f(yn)|l < [ f (@) |20 — ynl +
o(llzn = ynl)]. Let [t < ¢. Then fi(x) = fi(y) implies x —y = t[f(z) — f(y)]



so |lz —yll < [t[1[f(x) — f(y)|l < |t|cllz —y|| which implies x = y. The matrix

((%)) is of the form I 4+ tM where M = ((%)) Hence det ((%))

is a polynomial in ¢. Also det ((%)) = det({ +tM) > 0 for |t| sufficiently

small. Since m, (f:(K)) = /‘det ((%)) ’ dx [ see II, page 154 of Rudin’s

K
Real and Complex Analysis| we see that m,,(f:(K)) is a polynomial in ¢.

Theorem 1 [ Hairy Ball Theorem]

If n is an odd positive integer there is no continuous map ¢ : S*~1 — R"
such that ¢(z) # 0 for all x and < ¢(z),z >= 0 for all .

Remark: conclusion fails for n = 2: ¢(a,b) = (—b, a) has above properties.

Proof: suppose such a ¢ exists. By Lemma 1 there exists a continuously
differentiable function g : R™\{0} — R™ such that [|g(z)|| = 1 for all x €
Sn=1 g(rx) = rg(x) for all z € R™\{0} for all r > 0 and < g(z),z >= 0 for
all z € S"71. Let gi(z) = z + tg(x),x € R"\{0}. Let K = {x € R" : a <
lz]| < b} where 0 < a < 1 < b. For |t| sufficiently small g; is one-to-one
on K and it maps K onto {z € R" : av1+1t? < ||z|]| < bv1+¢?}. [ Be-
cause < g(x),z >=0 for all x € S" ! so ||z + tg(z)|| = ||z + t||z| g(z/ ||z|)|| =
llzl =/ =]l + tg(z/ llzID]l = l|lz|| V'1 + ¢ by orthogonality]. It follows by Lemma
2 that mp{z € R" : av1+t? < ||z|| < bv1+t?} coincides with a polynomial
in ¢ for |¢| sufficiently small. However we can compute this measure explicitly
and the value is [b"(1412)"/2 —a"(14+t2)"/?)m,, {x : ||z| < 1}. Since (1+t2)"/?
is not a polynomial for n odd we have completed the proof. [ Let n = 2m — 1.
Suppose(1 + t2)™~1/2 = p(t) for |t| small, where p is a polynomial. Then
(14 22)?m=1 = p2(2) for all 2 € C. The right side must be a polynomial with i
and —i as the only roots and since p(t) is real for |¢| sufficiently small it follows
that (1 + 22)?2~1 = ¢(z — i)¥(z + i)* for some k. We get a contradiction by
comparing the degrees].

Theorem 2 [Brouwer’s Fixed Point Theorem]
If f:5" 1 — S~ is continuous then f has at least one fixed point.

2 . TN n _ LS 2xo 2Ty, llz)®>—1
Proof: define ¢ : R™ — S™ by ¢ (1,22, ..., Tp) = (1+Hw|\2’ T T ”w”2+1).

[ It is trivial to check that ¢ does have its range inside S™]. Let ®(u) =

tli_r)%w where u = ¢(z) and g(z) = = — %}Ig‘)@ Let (S™); =
{z € 8" : z,41 < 0}. Assuming that f has no fixed point we shall verify
that @ is a continuous map from (S™); into R™ such that ®(z) # 0 for all z
and < ®(u),u >= 0 for all u € S™. We will then show that there is a similar
map on (S™), = {z € S™ : x,41 > 0} and that these two functions can be

combined to give a similar function on the whole of S™. This would contradict



the Hairy Ball Theorem, thereby completing the proof of Brouwer’s Theorem.
Continuity of ® is clear. Note that ¢(z) € (S™); iff ||z|| < 1. Also note that
if u = ¢(x) then ®(u) = ¢'(2)(g(x)) so < B(u),u >=< ¢'(x)(g(2)), d(z) >.
Let ||z|| = 1. We have to show that < ¢'(z)(g(z)), ¢(z) >= 0. We show that

< ¢'(z)y, ¢(x) >= 0 for any y. We have ||¢(.)|| = 1. Writing ¢; for the i — th
n+1 1

n+
component of ¢ we have Z $3(z) = 1 for all z. Hence Z ¢, (2) gf] (z) = 0 for all

=1 =1

n+l  n+l n+l n+1
z for all j. This gives Z Yj Z @, (2) gi: (2) =0or Z( gf; (2)yj)¢;(2) = 0.
j=1 =1 i=1 j=1

This says < ¢'(2)y,¢(z) >= 0. This completes the proof of the fact that
< ®(u),u >= 0 for all u € S™. It remains to show that ¢'(z)(g(x)) # 0 for
any z € (S™);. For this we show that g(z) # 0 and that ¢'(x) is one-to-one for

f@)(A—|z]?)
1-<z,f(z)>

f(z) = cx for some scalar ¢. We have cz(1 — ||z]|*) = [1 — ¢||z||*]a which gives
cx = z. But then f(z) = cx = = contrary to our assumption. Finally we show
that ¢'(x) is one-to-one for each z. Note that the range of ¢ is contained in
{y € Ry, < 1}. Define F : E = {y € R*! .y, < 1} — R" by
F(y1,Y2, s Ynt1) = (177%;17 lle/iﬂ s, 17?71:“)' F is a smooth function and
a simple computation shows that F(¢(z)) = z for all x € R™. It follows by
Chain Rule that F'(¢(z))¢'(z) = I for all z € R™. This implies that ¢'(x) is

one-to-one.

each x with [|z|| < 1. Suppose g(z) = 0. Then = z. In particular

This theorem does not hold in an infinite dimensional Hilbert space: if

f@) = (\/1—|z|? z1,22,...) then f maps {z € {2 : ||Jz| < 1} into itself
and is continuous. It has no fixed point.

Theorem 3
Any continuous map f of a compact convex K set in R™ into K has a fixed
point.

Proof: assume first that K C B = {z € R" : ||z|| < 1}. Define ¢ : B — K
by taking ¢(z) to be the unique point y of K such that ||z —y|| < ||z — 2] for
all z € K. Such a vector y exists and is unique. Note that ¢(z) = y = z if
z € K. Consider fo¢: B— K as a function from B into itself. The function
g : B — B defined by g(z) = f(¢(z)) is continuous because ¢ is continuous: let
x, — x. We have ||z, — ¢(x,)]| < ||z, — z|| for all z € K; Hence, if y is any
limit point of {¢(z,)} then ||z —y|| < ||o — z|| for all z € K. This proves that
@(z) is the only limit point of {¢(z,)} which lies in the compact set K. Hence
¢(xn) — &(z). By Theorem 1 there exists € B such that f(¢(z)) = x. Since
the range of f is contained in K we get x € K. But then ¢(z) = z so f(z) = x.



This proves the theorem when K C B = {x € R" : ||z|| < 1}. For the general
case choose R such that K C {z € R": ||z|| < R}. Let K1 = {R™'z: 2 € K}.
Then K; is a compact convex set and the function f; : K3 — K; defined by
fi(x) = R f(Rx) is continuous. By the first case there exists x1 € K; such
that R71f(Rxy) = z;. If # = Ray then f(x) = x.

Definition: a function f : E — X where X is a normed linear space (nls)
and E C X is called compact if f(A) is relatively compact whenever A C F is
bounded.

Lemma 3
Let X be an nls and K C X be compact. Let e > 0 and B(xz1,¢), B(22,¢), ..., B(zn, €)
cover K where {z1,z2,...,on} C K. let m;(z) = (¢ — ||z — ;||) " and ¢(z) =

N
E mi(x)z;
=1

N

Z m;(z)

Jj=1

x € K. Further ¢(K) C co(K).

for x € K. Then ¢ is continuous on K and ||¢(z) — x| < ¢ for all

N

Proof: it is obvious that each m, is continuous and Zml(x) > 0 for all
j=1

x € K. Hence ¢ is continuous. If z € K then m;(z) # 0 implies ||z — z;|| < &

N N
and hence Z mi(x)(z; — )| < EZmi(:z:) which proves that ||¢p(x) — z|| < e.
j=1 j=1

[ we have used the fact that m;(x) # 0 for at least one 7]. Last part is obvious.

Theorem 4 [ Schauder Fixed Point Theorem]
Let E be a closed bounded convex set in an nls X and f be a continuous
map of E into itself. If f is compact then it has a fixed point.

Proof: let K = [f(F)]”. Then K is a compact subset of E. For each n
let ¢,, : K — co(K) C E be a continuous function such that ||¢,,(z) — x| <
1/n for all x € K for all n. This is possible by the previous lemma. Let
fn = ¢, o f so that f, is a continuous map : K — E. In the notation of

previous lemma there is a finite set {mgn, xé", ceny xg\?n of K such that ¢, (K) C

(n

Y, = span({mgn,xén,...,x]\," ). Let F,, = ENY,. Then E, is a compact
convex set in the finite dimensional space Y,. We claim that f, maps E,
into itself. First note that f(F,) C f(E) € K so f, = ¢, o f is defined
on E, . Also ¢, takes values in co({x&”,xé",...,x%’n 1) C Y, as well as in
FE so it takes values in F,. By Theorem 2 there exists Yn € FE, such that
Fu(n) = Y. Since yo € E and f(yn) € K we have 6, (f(y)) — F(un)l| < 1/n
for all n. In other words ||y, — f(yn)| < 1/n for all n. Since {f(y,)} C K
and K is compact there is a subsequence { f(y,,)} converging to some y. Now



[, = yll < I1F@Wny) =yl + 1yn; = F @) < £ (Wn;) = yl| +1/n; — 0. This
implies f(y) = v.

Theorem 5 [ Schauder - Tychonoftf FPT]
Any continuous map f from a compact convex subset K of a Hausdorff
locally convex topological vector space X into K has a fixed point.

Preliminaries: we introduce an ordering for subsets of X* as follows: A <
B if for any 2* € A and € > 0 there exists a finite subset yi,v3,...,y; of
B and 0 > 0 such that z,y € K and |y (z) —y/(y)| < 0,1 < i < k imply
lz*(f(x)) —2*(f(y))|] < e. We observe that if A < B and y*(z) = y*(y) for
all y* € B then z*(f(z)) = z*(f(y)). Claim: for any z* € X* there exists
a countable family B = {y7,y5,...} such that {z*} < B. For this let ¢ >
0. First note that f is weak-weak continuous and K is compact convex in
weak topology. By uniform continuity of z* o f on K with its weak topology
|z*(f(x)) —2*(f(y))] < € if  — y belongs to a suitable weak neighbourhood of
0. Hence there exists yi,y3, ...,y and § > 0 such that |y} (z) — y;(y)| < 4,1 <
i < k implies |z*(f(z)) — 2*(f(y))| < e. Now vary  over {1 :n > 1} to get
a countable set B C X*. For any € > 0 choose n such that % < €. There
exist y},vs,...,y; and § > 0 such that |y} (z) —y!(y)| < 6,1 < ¢ < k implies
lz*(f(z)) —2z*(f(y))| < L < e. It follows that if |y*(z) — y*(y)| < ¢ for all
y* € B then |z*(f(x)) — 2*(f(y))] < €. Hence {a*} < B. If we now repeat the
argument for each element of B to get another countable set Bj, then repeat
the argument for each element of By and so on we end up with a countable
family By such that, together with z* itself, we get a countable subset C' of X*
which contains z* with C < C.

Lemma 4

Let K be a compact convex set in a locally convex Hausdorff topological
vector space X. If K has at least two points and f : K — K is continuous then
there is a proper subset K7 of K such that f(K;) C K; and K is also compact
and convex.

We first remark that this lemma immediately yields Theorem 5: there
is a minimal non-empty compact convex set K such that f(Kj) C Ky and K
must be a singleton by the lemma.

Proof of the lemma: we first reduce the proof to the case when the topology
of X is replaced by the weak topology. f is weak to weak continuous and K is
weakly compact. If K; weakly compact, convex and contained in K then it is
a weakly closed convex set, hence strongly closed. Hence it is a closed convex
subset of K in the strong (i.e. original) topology, hence strongly compact also.
Thus, we may and do assume that the topology of X is the weak topology.
Now suppose z,y € K,z # y. Choose z*such that z*(z) # z*(y). Let B =
{z§ = a*, 27, ...} be a countable subset of X* containing z* such that B < B.
Now zf(K) is compact for each ¢ > 0. We may suppose |z} (z)| < H% for all
i, for all z € K. [ This is because if C = {apz*,a127,...} with each a; > 0



then C < C]. Define h : K — 12 by h(z) = {z7(2)}. h is continuous (
by Dominated Convergence Theorem). Its range S is a compact convex set
contained in Cy = {a € I? : |a;] < H%l for all ¢}. S has at least two points
because z*(x) # x*(y). Let fo : S — S be the map ho f oh™!. In other words,
if a € S we pick z € K such that a = h(z) and define fo(a) = h(f(z)). To see
that this is well defined note that a = h(z1) = h(z2) implies z}(z1) = 27 (22)
for all ¢ which implies x}(f(z1)) = af(f(22)) for all i ( because B < B) so
h(f(z1)) = h(f(22)) so fo is well defined. The fact that B < B also implies
that if zf(z,) — z7(z) as n — oo for each i then z}(f(z,)) — zf(f(2)) for
each i. This means f; is continuous. [ Convergence of a sequence in Cy w.r.t.
I2 norm is equivalent to coordinatewise convergence]. Lemma 4 below shows
that fo has a fixed point a.Let K1 = h™*({a}). Let 2 € K7 so h(z) = a. Then
a = fola) = h(f(z)). Hence f(z) € K;. Thus f(K;) C K;. Clearly K; is
convex. It is a closed subset of S and hence it is compact.

Lemma 5
Let Co={a€l?:|a;] < H% for all ¢}. Then any continuous map f : Cy —
Cy has a fixed point.

Proof: let A, = {(x1,22,...,2,,0,0,...) : ¢ € Cy} and define g, : 4, — A,
by gn(z) = (y1,¥2, -y Yn,0,0,...) where y = f(z1,z2,...,2,,0,0,...). A, can
be identified with compact convex set in R™ and g, is continuous, hence it
has a fixed point (™). [Tt is trivial to see that if every continuos map on a
topological space X has a fixed point and Y is homeomorphic to X then every
continuos map on Y has a fixed point]. Since {z(™} C Cy and Cj is com-
pact in 12 there is a subsequence {x(”f)} converging to some z € Cy. Let y(™) =
f(xgn),xén), ...7$51n),0,07 ...) so that (") = g, (z(")) = (ygn),yén), ...,yfln),0,0, ).
It is clear that {xg”),xg"),...,xﬁ{l),o,o,...} — x s0o Yy — f(z). Hence x =
lim (") = lim(yinj),yénj), ...,yﬁb"j),o, 0,...)

= limy("™) = f(z).

Lemma 6
If K is a closed convex subset of Cj then every continuous map of K into
itself has a fixed point.

Proof: this is similar to the proof of Theorem 2. For each = € Cy there is a
unique point Pz in K closest to z and the map P : Cy — K is continuous. If
f+ K — K is continuous then g : Cy — Cj defined by g = f o P is continuous.
Hence there exists « € Cy such that f(P(z)) = z. Since the range of f is
contained in K we see that z = f(P(x)) € K. But then P(x) =z so z = f(x).

Theorem 6 [ Markov - Kakutani FPT]
Let K be a compact convex subset of a locally convex Hausdorff topological
vector space X. Let f, : K — K (a € I) be a family of continuous functions that



are affine (which means they satisfy the condition fa(z a;x;) = Zaifa(mi)
i=1 j

whenever n € N, a; > 0 for all ¢ and Zai =1). If fo o fz = fzo fo for all
i=1
a, B € I then there exists © € K such that f,(z) =z for all « € I.

n—1
Proof: let £ =1 Z i where fi is f. composed with itself i times. f{)
=0

maps K into itself and any two members of {fé") ca€I,n>1} commute. Let
F be the collection of sets f((xn)(K),a € I,n > 1. Each set in this collection
is non-empty, compact and convex. This family also has finite intersection
property: given a; € I,n; > 1 for 1 < j < N consider ( () o fln2),
() )(K). Tt is clear that this non-empty set is contained in ( ,5:1 ))(K ) for
each j. Hence there is a point zy which belongs to fc(y") (K) foralla € I,n > 1.
We claim that f,(x0) = o for all @ € T for all n. Since zy € fén)(K) there
exists © € K such that xy = ((Xn)(a?) = Lz + fl(z) + f2(x) + ... + f2 (@)
Hence fa(20) — 20 = 3[fa(@) + fo(@) + ... + fa~} (@) + f2(2)] - fle + fa(@) +
f2x)+ .+ [ (@) = L fr(2) — Lz € L(K — K). This is true for each n and
hence fo(xo) = zo. [ Let U be a nelghbourhood of 0. Then K — K C mU for
some m, since, otherwise, 3 z,,, € K — K(m = 1,2, ...) such that Lz, ¢ U for
any m; by compactness of K — K there is a subnet {xm} converging to some x.
But then m—xm — 0 contradicting the fact that —xm ¢ U for any i. It now
follows that fo(z0) — 20 € U = U . Since U is arbltrary and X is Hausdorff,

fa(zo) = wol.
Notation: if p is a seminorm on X and A C X we write d,(A) for sup{p(z —

y) :z,y € A}.

.. 0

Lemma 7

Let X be a Hausdorff locally convex topological vector space and K be non-
empty, convex, weakly compact, separable subset. Let p be a weakly continuous
semi-norm on X and € > 0. Then there is a closed convex subset C' of K such
that C' # K and py(K\C) < e.

Proof: let S = {z € X : p(x) < ¢/4}. By Krein - Milman Theorem K has
extreme points and it is the closed convex hull of the set of extreme points. Let
D be the closure of the set of extreme points of K in the weak topology. Let
{zn} be a countable dense subset of K. For each € K the neighbourhood
{y € K : ply — x) < ¢/4} must contain some z,. Note that z € z, + S.

Thus K C U(mn + 5). Since S is weakly closed ( because it is closed and

n
convex) and D is a weakly compact subset of K there exists ng such that
(Zny +S) N D has non-empty interior in D. [ D with the weak topology is a
(locally) compact Hausdorff space so we can apply Baire Category Theorem].



Hence there exists a weakly open set U such that U N D C (z,, +.5) N D and
UND # 0. Let Ky be the closed convex hull of D\U and Kj that of D NU.
These two sets are weakly compact and convex. Any extreme point of K belongs
to D C (DIU)U(DNU) C Ky UK, Also co(K;1 U K») is weakly closed (see
below) and Krein - Milman Theorem implies K C co(K; U K3). But the reverse
inclusion also holds so K = co(K; U K3).

Proof of the fact that co(K7 U K3) is weakly closed: if a;z; + 8,y; — 2 then,
through a subnet, o, — o, 38; — B,2; = z,y; —yand o« > 0,8 > 0,a+ 8 =
1,z € K; and y € Ky. Hence z = ax + By € co(K1 U K3).

Next, we show that K; is a proper subset of K. Suppose K7 = K, i.e.,

K = co(D\U). This implies that the extreme points of K belong to D\U. [ All
closures etc in this proof are w.r.t. weak topology. Suppose x( is an extreme
point of K which does not belong to D\U. There exists a continuous seminorm
q ( viz. Minkowski functional of a balanced convex neighbourhood V' of 0 such
that zo +V does not intersect D\U) such that (D\U)N{xz : ¢(x —x¢) < 1} = 0.
Let Uy = {z : q(z) < 1/3}. Then (zg + Up) N (D\U) + Up) = 0. Hence =z ¢
[(D\U)+Uy)]~. Now D\U is compact. ( We are referring to the weak topology).

k
Hence D\U C U(y,-+U0) for some finite set {y1,y2,...,yx} € D\U. The closed
i=1

convex hull H; of (D\U) N (y; +Up)) is contained in y; + 1}0. Also H; C K. As
k k
shown above co(U H;) is closed. Hence K = [co(D\U)]~ C co(U H;). Since
i=1 i=1
k k

zo € K we can write xg as Zaimi with a}s > 0 Zai =1 and x; € H; for all
— —

1. Since zg is an extreme p(;int of K it follows th;t xo € H; for some 7. Hence
xo € y; + Uy C [D\U + Up]~, a contradiction]. [We now switch back to the
original topology of X]. Now since D\U is weakly closed ( because U is weakly
open) so D C D\U by the definition of D. This means D N U = (. This is a
contradiction to the choice of U. We have proved that K; # K.

Recall that U N D C (z,, +5) N D. Hence Ky, the closed convex hull of
D NU is contained in z,, + 5 = {z : p(z — z9) < ¢/4}. Hence the diameter
of dp(Ks2) < e/2. For 0 < r < 1let fr(x1,x2,t) = txg + (1 — t)zg for z; €
Ki,29 € Ka,t € [r,1]. Let C, be the range of this function. Since f, is
continuous, C, is weakly compact and convex. [ Indeed, K; and K> are weakly
close and f,. is (weak,weak,usual) to weak continuous. Convexity of C,. is proved
as follows: a(tx1+ (1 —t)x2)+ (1 —a)((sy1 + (1 — s)y2) = Bz1 + (1 — B) 22 where

B=at+ (1 - a)s’ - atzy+(1—a)sy; 2y = a(lft)szrl(iga)(lfs)yﬂ'

Claim: C, # K for any r € (0,1]. If C, = K and z is an extreme point of
K then z € C, so z = txy + (1 — t)zo for some z1 € Ky,22 € Ko, t € [r,1].
But then t =1 or z = &1 = 5. In either case z = x; € K; so ext(K) C K;.
This implies K C K; and hence K = K;. This contradiction shows that
C, # K for any » € (0,1]. Now note that C,, C K. Thus there exists a




point z in K\C,. Since K = co(K; U Ks) we can write z as tz1 + (1 — t)zs
with z; € Ky,29 € Ka,t € [0,1]. Since z ¢ C, we must have t < r. Now
p(z—x2) = p(tx1—tzs) = tp(z1—22) < rdy(K). Let u = sy1+(1—s)y2 € K\C, (
Y1 € Ki1,y2 € K3,0 < s <7). Then p(z—u) < p(z—z2)+p(r2—y2)+p(y2—u) <
rdy(K) + pa(K2) + rdy(K) | since the argument used for p(z — z2) < rd,(K)
shows that p(y2 — u) < rd,(K)]. Thus p(z —u) < 2rd,(K) + /2. We have
proved that d »(K\Cr) < 2rd,(K)+ 5/2. If d,(K) = 0 we are done. Otherwise,
take r = 5777 to get pd(K\C ) <

Let A C X and {T;}icr a family of maps from A into itself. We say {T;} is
a contracting family if 3  # y in A such that 0 € {T;o — T,y : i € I}~. The
family is a NCF (non-contracting family) if it is not contracting.

Remark: any subfamily of a NCF is a NCF.

Lemma 8
With above notations {T;} is a NCF iff x # y (x,y € A) implies 3 a contin-
uous seminorm p such that inf{p(T;(x) — T;(y)) : ¢ € I} > 0.

Proof: suppose x # y implies 3 a continuous seminorm p such that inf{p(T;(x)—

Ti(y)):i €1} >0. If x #y then {z: p(z) < ¢} is a neighborhood of 0 which
does not intersect {T;z — T;y : ¢ € I} provided 0 < § < inf{p(T;(x) — T;(y)) :
i € I} > 0. Hence 0 ¢ {Tiw — Tyy : ¢ € I}~ and the given family is
not contracting. Conversely suppose {T;} is a NCF. Suppose x # y. Then
0¢ {Tiyx —Tyy:i€ I}~ and there is a balanced convex neighbourhood U of 0
such that U N{T;z — T;y : i € I} = . Let p be the Minkowski function al of U.
Then p is a continuous seminorm and p(T;(x) — T;(y)) > 1 for all 4.

Theorem 7 [Ryll -Nardzewski FPT]

Let X be a Hausdorff locally convex topological vector space and A be a
weakly compact convex subset. Let {T; : i € I'} be a semigroup of affine maps
each of which is weakly continuous. If this family is a NCF then it has a common
fixed point in A.

Remarks: a family {7;} of maps on A is a semigroup if it is closed under
composition. Any family generates a semigroup: just take all finite compositions
of members of the family. We call this the semigroup generated by the given
family.

Proof: we first prove that any finite subset {T;,,T;,,...,T;,} has a com-
mon fixed point. The map S = Q is also afﬁne and weakly con-
tinuous. By Markov - Kakutani FPT there exists xo such that S(zg) = xo.
We claim that T;,wg = x¢ for all j < n. If T;;z9 # x¢ for some j then we

can rename the Ti’js so that T, wg # o for 1 < j < m and Tj,x9 = wo for

m<j<n. Let W=
(Do H oo ot Tin

T; T; Tim T; T; Tim
Lptlipt A lim 2;2 im  Then g = Sz = (—1+ 2:{ + )xo +

n



T;, +T; ++T1m _ . . —(n—
= (= )xo + 2. This gives Wy = %m)zo = 2x9. We

are now in a situation where, with obvious change of notations, T;, (zo) # xo for
any j but S(zg) = zo. In this case we proceed as follows: there exists ¢ > 0 and
a continuos seminorm p such that for any 7; we have p(T;(T3, (x0)) — Ti (o)) > €
(¢ independent of [). [ We used Lemma 6 with T;, (z¢) and x¢ in place of
x and y. The seminorm can depend on j but we can sum these seminorms
over jl. Let G; be the semigroup generated by {7, : 1 < j < n}. Then
G C {T;} and G consists of all finite compositions of the maps T;,. Hence
G is a countable semigroup contained in {T;}. Let K be the closed convex
hull of {Txo : T € G1}. K is a separable weakly compact convex set and
K C A. [ It is weakly compact because it is a weakly closed subset of the
weakly compact set A]. By Lemma 5 there exist a closed convex set C C K
such that C' # K and p(K\C) < e. For some T' € G; we have Tz ¢ C. [For,

Tz € C for each T € G; implies K C C, so K = C, a contradiction]. Now
TQ',‘O _ TTo(,’L‘()) _ TT11$0+TTi2IO+...+TTinIO so TTilmg—‘rTTizflo—‘r...—‘rTTinIo ¢ C. Tt

follows that T'7;, o ¢ C for some J- But pa(K\C) < e so p(T(Ti;x0) —Txo) < €.
This contradicts the choice of the seminorm p. We have proved that every
finite subfamily of {T;} has a common fixed point. For any finite subfamily
{T:,, Ty, ..., Ty, } of {T}} the set {x € A:T;,(x) =x for 1 <j < n} is a weakly
compact convex set. These compact sets have finite intersection property. Hence
that is a point x in the intersection of these sets. = is a common fixed point for
the family {7;}.

Application to existence of Haar measure on compact groups.

Let @ be the set of all Borel probability measures on a compact topological
group G. Give @ the weak* topology induced from M(G) = (C(G))*. Con-
sider the following maps from @ into itself: u —, p, and p — [z,uy]*l where
(tty)(E)pu(xEy) and v~ ! (E) = v(E~"). These form a semigorup of affine maps
on @ [ See proof below]. If we show that this family is a non-contracting and that
each of the maps in this semigroup is weakly continuous we can conclude that
there is a probability measure P on G with P(Ez) = P(yE) = P(E) = P(E™!)
for all £ Borel in G for all z,y € G. Let us first show that above family
is a semigroup. Write Lyu(E) = p(zE), Ryu(E) = p(Ey), Su(E) = p(E~1).
We are considering the family {SL,R, : z,y € G} U{L, R, : z,y € G}. We
claim that (SLg, Ry,)(SLs,Ry,) = L1, R, -1. This would show easily that

yi twa  ya

the family is a semigroup of affine Hiaps. Now (SLg Ry, )(SLy, Ry, ) u(E) =
(SLJHR?M )MS(:CQEyQ)

= (9L, Ry )plyy "B~ ey ) = Splaryy "B ey ) = plyr e Bysat ') =
(Lyflm2 R, - )u(E). The fact that these maps are continuous for the weak*topology
is clear. It remains only to show that 0 ¢ cl({T'w — Tv}r) where T ranges over
all the operators in our semigroup and g and v are distinct probability measures.
The maps (z,y) — SL,R, and (x,y) — Ly R, are continuous and hence their
images are compact. Thus cl({Tu—Tv}r) ={Tp—Tv}rand 0 ¢ {Tu—Tv}r
since [ fdTu = [ fdTv for all f € C(G) implies [ gdu = [ gdv for all g.
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